翻訳と辞書 |
Algebraic space : ウィキペディア英語版 | Algebraic space In mathematics, algebraic spaces form a generalization of the schemes of algebraic geometry, introduced by for use in deformation theory. Intuitively, schemes are given by gluing together affine schemes using the Zariski topology, while algebraic spaces are given by gluing together affine schemes using the finer étale topology. Alternatively one can think of schemes as being locally isomorphic to affine schemes in the Zariski topology, while algebraic spaces are locally isomorphic to affine schemes in the étale topology. The resulting category of algebraic spaces extends the category of schemes and allows one to carry out several natural constructions that are used in the construction of moduli spaces but are not always possible in the smaller category of schemes, such as taking the quotient of a free action by a finite group (cf. the Keel–Mori theorem). ==Definition==
There are two common ways to define algebraic spaces: they can be defined as either quotients of schemes by etale equivalence relations, or as sheaves on a big etale site that are locally isomorphic to schemes. These two definitions are essentially equivalent.
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Algebraic space」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|